

Welcome, Onebone!

Onebone [https://github.com/Onepredict/onebone] is an open-source software for signal analysis about predictive maintenance,
being used for research activities at ⓒ ONEPREDICT Corp. [https://onepredict.ai/].
It includes modules for preprocessing, health feature, and more.
If you need to analyze signals for industrial equipments like turbines, a rotary machinery or
componets like gears, bearings, give onebone a try!

Getting Started

1. Prerequisite

onebone requires Python 3.6.5+.

2. Installation

onebone can be installed via pip from PyPI [https://pypi.org/project/onebone/].

$ pip install onebone

It can be checked as follows whether the onebone has been installed.

>>> import onebone
>>> onebone.__version__

3. Usage

It assumes that the user has already installed the onebone package.
You can import directly the function, for example:

>>> from onebone.feature import tacho_to_rpm

Contents

Documentation

	onebone
	onebone.feature

	onebone.math

	onebone.preprocessing

	onebone.signal

	onebone.utils

Call for contribute

We appreciate and welcome contributions. Small improvements or fixes are always appreciated; issues labeled as “good first issue” may be a good starting point.

Writing code isn’t the only way to contribute to onebone. You can also:

	triage issues

	review pull requests

	help with outreach and onboard new contributors

If you’re unsure where to start or how your skills fit in, reach out! You can ask here, on GitHub, by leaving a comment on a relevant issue that is already open.

If you want to use an code for signal analysis, but it’s not in onebone, make a issue.

Please follow this guide [https://github.com/Onepredict/onebone/blob/main/wiki/development_guide.md] to contribute to onebone.

onebone

	onebone.feature

	onebone.math

	onebone.preprocessing

	onebone.signal

	onebone.utils

onebone.feature

onebone.feature.correlations

Signal correlation features.

	Author: Kibum Kim

	Contact: kibum.kim@onepredict.com

	
onebone.feature.correlations.phase_alignment(y: ndarray, fs: Union[int, float]) → Tuple[ndarray, ndarray]

	Compute phase alignment(PA) of a set of 1D signals

\[{PA_{f} = \mid {1 \over n} \sum_j{e^{iw_{j,f}}} \mid }\]

Where \(PA_{f}\) is phase alignment value on frequency \(f\),
\(n\) is the number of signals, and \(j\) is the index of each signals.
\(w_{j, f}\) denotes phase of signal \(j\) at frequency \(f\).

This function computes mean vector of unit phase vectors of 1D signals.
This process is repeated for every frequency unit.

	Parameters

	
	y (numpy.ndarray of shape (n, signal_length)) – n denotes the number of signals, and each signal shold be 1D time domain.

	fs (int or float) – Sample rate. The sample rate is the number of samples per unit time.

	Returns

	
	freq (numpy.ndarray) – Frequency array

	phase_alignment (numpy.ndarray) – Phase alignment value of each frequency

Examples

>>> fs, n = 1000.0, 1000
>>> x = np.linspace(0.0, n / fs, n, endpoint=False)
>>> signal = 3 * np.sin(50. * np.pi * x) + 2 * np.sin(80.0 * np.pi * x)
>>> y = np.array([signal + np.random.uniform(low=-1, high=1, size=(n,)) for i in range(10)])
>>> freq, pa_result = phase_alignment(y, fs)

onebone.feature.frequency

Frequency domain feature.

	Author: Kangwhi Kim

	Contact: kangwhi.kim@onepredict.com

	
onebone.feature.frequency.mdf(amp: ndarray, fs: Union[int, float] = 1, freq_range: Optional[Tuple] = None, axis: int = -1, keepdims: bool = False) → float

	Compute the median frequency.

\[{\sum_{j=1}^{MDF} A_{j} = \sum_{j=MDF}^{M} A_{j} = {1 \over 2}\sum_{j=1}^M P_{j}}^{[1]}\]

Where \(A_{j}\) is the amplitude value of spectrum at the frequency bin \(j\),
and \(M\) is the length of frequency bin.

	Parameters

	
	amp (numpy.ndarray of shape (signal_length,), (n, signal_length)) – The amplitudes of a spectrum of time-domain signals.

	fs (int or float, default=1) – Sample rate. The sample rate is the number of samples per unit time.
If fs is 1, then mdf is the normalized frequency; (0 ~ 1).

	freq_range (tuple, default=None) – Frequency range, specified as a two-element tuple of real values.
If freq_range is None, then mdf uses the entire bandwidth of the input signal.
That is, freq_range is (0, fs / 2).

	axis (int, default=-1) – Axis along which mdf is performed.
The default, axis`=-1, will calculate the `mdf along last axis of x.
If axis is negative, it counts from the last to the first axis.

	keepdims (bool, default=False) – If this is set to True, the axes which are reduced are left in the result as dimensions with size one.

	Returns

	mdf (float or numpy.ndarray) – Median frequency.
If fs is 1, then mdf has units of cycle/sample.
But, if you specify the fs, then mdf has the same units as fs. E.g. cycle/sec.

References

	1

	Angkoon Phinyomark, Sirinee Thongpanja, Huosheng Hu,
Pornchai Phukpattaranont and Chusak Limsakul (October 17th 2012).
The Usefulness of Mean and Median Frequencies in Electromyography Analysis,
Computational Intelligence in Electromyography Analysis -
A Perspective on Current Applications and Future Challenges, Ganesh R. Naik, IntechOpen,
DOI: 10.5772/50639. Available from: https://www.intechopen.com/chapters/40123

Examples

>>> import numpy as np
>>> fs = 100
>>> t = np.arange(0, 1, 1 / fs)
>>> x1 = np.sin(2 * np.pi * 10 * t)
>>> x2 = np.sin(2 * np.pi * 20 * t)
>>> x3 = np.sin(2 * np.pi * 30 * t)
>>> x = x1 + x2 + x3
>>> amp = np.abs(np.fft.fft(x))
>>> mdf(amp, fs)
20

	
onebone.feature.frequency.mnf(amp: ndarray, fs: Union[int, float] = 1, freq_range: Optional[Tuple] = None, axis: int = -1, keepdims: bool = False) → Union[float, ndarray]

	Compute the mean frequency.

\[{MNF = {\sum_{j=1}^M f_{j}A_{j} \over \sum_{j=1}^M A_{j}}}^{[1]}\]

Where \(f_{j}\) is the frequency value of spectrum at the bin \(j\),
\(A_{j}\) is the amplitude value of spectrum at the frequency bin \(j\),
and \(M\) is the length of frequency bin.

	Parameters

	
	amp (numpy.ndarray of shape (signal_length,), (n, signal_length)) – The amplitudes of a spectrum of time-domain signals.

	fs (int or float, default=1) – Sample rate. The sample rate is the number of samples per unit time.
If fs is 1, then mnf is the normalized frequency; (0 ~ 1).

	freq_range (tuple, default=None) – Frequency range, specified as a two-element tuple of real values.
If freq_range is None, then mnf uses the entire bandwidth of the input signal.
That is, freq_range is (0, fs / 2).

	axis (int, default=-1) – Axis along which mnf is performed.
The default, axis`=-1, will calculate the `mnf along last axis of x.
If axis is negative, it counts from the last to the first axis.

	keepdims (bool, default=False) – If this is set to True, the axes which are reduced are left in the result as dimensions with size one.

	Returns

	mnf (float or numpy.ndarray) – Mean frequency.
If fs is 1, then mnf has units of cycle/sample.
But, if you specify the fs, then mnf has the same units as fs. E.g. cycle/sec.

References

	1

	Angkoon Phinyomark, Sirinee Thongpanja, Huosheng Hu,
Pornchai Phukpattaranont and Chusak Limsakul (October 17th 2012).
The Usefulness of Mean and Median Frequencies in Electromyography Analysis,
Computational Intelligence in Electromyography Analysis -
A Perspective on Current Applications and Future Challenges, Ganesh R. Naik, IntechOpen,
DOI: 10.5772/50639. Available from: https://www.intechopen.com/chapters/40123

Examples

>>> import numpy as np
>>> fs = 100
>>> t = np.arange(0, 1, 1 / fs)
>>> x1 = np.sin(2 * np.pi * 10 * t)
>>> x2 = np.sin(2 * np.pi * 20 * t)
>>> x3 = np.sin(2 * np.pi * 30 * t)
>>> x = x1 + x2 + x3
>>> amp = np.abs(np.fft.fft(x))
>>> mnf(amp, fs)
20

	
onebone.feature.frequency.vcf(amp: ndarray, fs: Union[int, float] = 1, freq_range: Optional[Tuple] = None, axis: int = -1, keepdims: bool = False) → float

	Compute the variance of central frequency(mean frequency).

\[{VCF = {1 \over \sum_{j=1}^M A_{j}}{\sum_{j=1}^M A_{j}(f_{j} - MNF)^2}}^{[1]}\]

Where \(f_{j}\) is the frequency value of spectrum at the bin \(j\),
\(A_{j}\) is the amplitude value of spectrum at the frequency bin \(j\),
\(M\) is the length of frequency bin,
\(MNF\) is the mean frequency.

	Parameters

	
	amp (numpy.ndarray of shape (signal_length,), (n, signal_length)) – The amplitudes of a spectrum of time-domain signals.

	fs (int or float, default=1) – Sample rate. The sample rate is the number of samples per unit time.
If fs is 1, then vcf is the normalized frequency; (0 ~ 1).

	freq_range (tuple, default=None) – Frequency range, specified as a two-element tuple of real values.
If freq_range is None, then vcf uses the entire bandwidth of the input signal.
That is, freq_range is (0, fs / 2).

	axis (int, default=-1) – Axis along which vcf is performed.
The default, axis`=-1, will calculate the `vcf along last axis of x.
If axis is negative, it counts from the last to the first axis.

	keepdims (bool, default=False) – If this is set to True, the axes which are reduced are left in the result as dimensions with size one.

	Returns

	vcf (float or numpy.ndarray) – Median frequency.
If fs is 1, then vcf has units of cycle/sample.
But, if you specify the fs, then vcf has the same units as fs. E.g. cycle/sec.

References

	1

	Angkoon Phinyomark, Sirinee Thongpanja, Huosheng Hu,
Pornchai Phukpattaranont and Chusak Limsakul (October 17th 2012).
The Usefulness of Mean and Median Frequencies in Electromyography Analysis,
Computational Intelligence in Electromyography Analysis -
A Perspective on Current Applications and Future Challenges, Ganesh R. Naik, IntechOpen,
DOI: 10.5772/50639. Available from: https://www.intechopen.com/chapters/40123

Examples

>>> import numpy as np
>>> fs = 100
>>> t = np.arange(0, 1, 1 / fs)
>>> x1 = np.sin(2 * np.pi * 10 * t)
>>> x2 = np.sin(2 * np.pi * 20 * t)
>>> x3 = np.sin(2 * np.pi * 30 * t)
>>> x = x1 + x2 + x3
>>> amp = np.abs(np.fft.fft(x))
>>> vcf(x, fs)
66.666

onebone.feature.gear

Condition metrics for gear.

	Author: Kyunghwan Kim, Kangwhi Kim

	Contact: kyunghwan.kim@onepredict.com, kangwhi.kim@onepredict.com

	
onebone.feature.gear.na4(x_tsa: ndarray, prev_info: Tuple[int, float], fs: Union[int, float], rpm: float, freq_list: Optional[Tuple[float]] = None, n_harmonics: int = 2) → Tuple[float, Tuple[int, float]]

	Calculate NA4 metric.

NA4 indicates the onset of damage and continues to react to the damage
as it spreads and increases in magnitude.

\[{NA4 = {N\sum_{i=1}^N (r_{i}-\bar{r})^4 \over \left\{\frac{1}{M}
\sum_{j=1}^M \left[\sum_{i=1}^N (r_{ij}-\bar{r_j})^2\right] \right\}^2}
= {({\mu}_4)_M \over {\frac{1}{M}\sum_{j=1}^M ({\mu}_2)_j}}}^{[1]}\]

Where \(r\) is residual signal, \(\bar{r}\) is mean value of residual signal,
\(N\) is total number of data points in time record,
\(M\) is current time record in run ensemble,
\(i\) is data point number in time record,
\(j\) is time record number in run ensemble,
\({\mu}_2\) is the 2th central moment of \(r\),
and \({\mu}_4\) is the 4th central moment of \(r\).

	Parameters

	
	x (numpy.ndarray of shape (length of x,)) – Time-synchronous-averaged signal (recommended)

	prev_info (tuple of (int, float)) – The information for the ‘previous time record number’ in run ensemble.
The first element of prev_info is the ‘previous time record number’(M-1).
The second element of prev_info is the average of each 2th central moment
of (M-1) previous residual signals. If the current time record number is 1, the prev_info is (0, 0).

	fs (int or float) – Sampling rate

	rpm (float) – Revolution per minute. The unit of ‘rpm’ is ‘rev/min’.

	freq_list (None or tuple of floats, default=None) – The frequencies of gear-meshing components.
They are filtered from the ‘x’ signal.

	n_harmonics (int, default=2) – A positive integer specifying the number of shaft
and gear meshing frequency harmonics to remove.

	Returns

	
	na4 (float) – A metric to not only detect the onset of damage,
but also to continue to react to the damage as it increases.

	cur_info (tuple of (int, float)) – The information for the ‘current time record number’ in run ensemble.
The first element of cur_info is the ‘current time record number’(M).
The second element of cur_info is the average of each 2th central moment of M residual signals.

References

	1

	Zakrajsek, James & Handschuh, Robert & Decker, Harry. (1994).
Application of fault detection techniques to spiral bevel gear fatigue data.
Available from: https://ntrs.nasa.gov/citations/19940020010

Examples

>>> rpm = 180 # Revolution per minute
>>> fs = 50e3 # Sampling rate
>>> t = np.arange(0, (1 / 3) - 1 / fs, 1 / fs) # Sample times
>>> freq_list = (51, 153) # Gear mesh frequencies
>>> f = (rpm/60,) + freq_list # Frequencies of signals
>>> prev_info = (0, 0) # The information for the 'previous time record number' in run ensemble.
>>> n_harmonics = 2
>>> na4_list = []

Assume that the gear condition is getting worse.

>>> for k in range(1, 11):
 # Motor shaft rotation and harmonic
 shaft_signal = np.sin(2 * np.pi * f[0] * t) + np.sin(2 * np.pi * 2 * f[0] * t)
 # Gear mesh vibration and harmonic for a pair of gears
 gm1_signal = 3 * np.sin(2 * np.pi * f[1] * t) + 3 * np.sin(2 * np.pi * 2 * f[1] * t)
 # Gear mesh vibration and harmonic for a pair of gears
 gm2_signal = 4 * np.sin(2 * np.pi * f[2] * t) + 4 * np.sin(2 * np.pi * 2 * f[2] * t)
 # Fault component signal
 fault_signal = 2 * (k / 6) * np.sin(2 * np.pi * 10 * f[0] * t)
 # New signal is the sum of gm1_signal, gm2_signal, and fault_signal.
 new_signal = shaft_signal + gm1_signal + gm2_signal + fault_signal

Calculate NA4
na4_, cur_info = na4(new_signal, prev_info, fs, rpm, freq_list, n_harmonics)
prev_info = cur_info
na4_list.append(na4_)

>>> print(na4_list)
[1.536982703280907, 3.857738227803903, 5.590250485891509, 6.835250547872656, 7.755227746173137,
 8.457654233606695, 9.009683995782796, 9.454160950683573, 9.819352835339927, 10.12454304712786]

onebone.feature.snr

	
onebone.feature.snr.snr(x: ndarray, fs: Union[int, float] = 1000, nperseg: int = 256, noverlap: int = 32) → ndarray

	Extract the SNR(Signal-to-Noise-Ratio) feature from the signal using the ‘STFT’.
SNR is the ratio between max power intensity of frequency and power of other frequencies
at time t in the STFT spectrum.

\[P_{signal}(t) = max(|STFT(t,f)|)\]

\[SNR(t) = {P_{signal}(t) \over {\sum_{f}|STFT(t,f)|} - P_{signal}(t)}\]

	Parameters

	
	x (numpy.ndarray) – 1d-signal data. Must be real.

	fs (int or float) – Sampling rate.

	nperseg (int, default=256) – Length of each segment.

	noverlap (int, default=32) – Number of points to overlap between segments.

	Returns

	snr (numpy.ndarray) – SNR of the x, 1d-array.

Examples

>>> fs = 1000.0
>>> t = np.linspace(0, 1, int(fs))
>>> x = 10.0 * np.sin(2 * np.pi * 20.0 * t)
>>> snr_array = snr_feature(x, fs)

Notes

	Get a snr array by using snr_feature for one of given signals.

	Make the segments of snr array and get the mean of each segment.

	Compare the mean of SNR between normal states and fault states. e.g. SNR_fault = np.mean(SNR_fault_array), SNR_normal = np.mean(SNR_normal_array)

	Typically, SNR_fault is smaller than SNR_normal.

onebone.feature.tacho

Convert tacho to angle or RPM.

	Author: Kangwhi Kim

	Contact: kangwhi.kim@onepredict.com

	
onebone.feature.tacho.tacho_to_angle(x: ndarray, fs: Union[int, float], state_levels_trh: Union[int, float], indices_trh: int = 2, pulses_per_rev: int = 1, output_fs: Optional[Union[int, float]] = None, fit_type: str = 'linear') → Tuple[ndarray, ndarray, ndarray]

	Extract angle signal from tachometer pulses.

	Parameters

	
	x (numpy.ndarray) – Tachometer pulse signal(1-D).

	fs (int or float) – Sample rate.

	state_levels_trh (int or float) – The difference between state levels used to identify pulses.
(The state levels used to identify pulses.)

	indices_trh (int, default=2) – The difference between indices of the first samples of high-level-state of pulses.

	pulses_per_rev (int, default=1) – Number of tachometer pulses per revolution.

	output_fs (int or float, default=None) – Output sample rate. When the default is None, the output_fs is the fs.

	fit_type (str, default="linear") – Fitting method

	Returns

	
	angle (numpy.ndarray) – Rotational angle(1-D).

	t (numpy.ndarray) – Time(1-D) expressed in seconds.

	tp (numpy.ndarray) – Pulse locations(1-D) expressed in seconds.

Examples

>>> x = np.array([0,1,0,1,0,0,1,0,0,1])
>>> fs = 10
>>> state_levels_trh = 0.5

>>> angle, t, tp = tacho_to_angle(x, fs, state_levels_trh)

>>> angle
array([-6.28318531e+00, -4.18879020e+00, -2.09439510e+00, 1.16262283e-15,
 2.09439510e+00, 4.18879020e+00, 6.28318531e+00, 8.37758041e+00,
 1.04719755e+01, 1.25663706e+01])
>>> t
array([0. , 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9])
>>> tp
array([0.3, 0.6, 0.9])

	
onebone.feature.tacho.tacho_to_rpm(x: ndarray, fs: Union[int, float], state_levels_trh: Union[int, float], indices_trh: int = 2, pulses_per_rev: int = 1, output_fs: Optional[Union[int, float]] = None, fit_type: str = 'linear') → Tuple[ndarray, ndarray, ndarray]

	Extract RPM signal from tachometer pulses.

	Parameters

	
	x (numpy.ndarray) – Tachometer pulse signal(1-D).

	fs (int or float) – Sample rate.

	state_levels_trh (int or float) – The difference between state levels used to identify pulses.
(The state levels used to identify pulses.)

	indices_trh (int, default=2) – The difference between indices of the first samples of high-level-state of pulses.

	pulses_per_rev (int, default=1) – Number of tachometer pulses per revolution.

	output_fs (int or float, default=None) – Output sample rate. When the default is None, the output_fs is the fs.

	fit_type (str, default="linear") – Fitting method.

	Returns

	
	rpm (numpy.ndarray) – Rotational speed(1-D).

	t (numpy.ndarray) – Time(1-D) expressed in seconds.

	tp (numpy.ndarray) – Pulse locations(1-D) expressed in seconds.

Examples

>>> x = np.array([0,1,0,1,0,0,1,0,0,1])
>>> fs = 10
>>> state_levels_trh = 0.5

>>> rpm, t, tp = tacho_to_rpm(x, fs, state_levels_trh)

>>> rpm
array([200., 200., 200., 200., 200., 200., 200., 200., 200., 200.])
>>> t
array([0. , 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9])
>>> tp
array([0.3, 0.6, 0.9])

onebone.feature.tacholess

Track and extract a instantaneous frequency(IF) profile from vibration signal

	Author: Kangwhi Kim

	Contact: kangwhi.kim@onepredict.com

	
onebone.feature.tacholess.two_step_if(x: ndarray, fs: Union[int, float], f_start: Union[int, float], f_tol: Union[int, float], filter_bw: Union[int, float], window: Union[str, Tuple, ndarray] = 'hann', nperseg: int = 256, noverlap: Optional[int] = None, **kwargs) → ndarray

	Track and extract a instantaneous frequency(IF) profile from vibration signal, based on Two-step method.

Note

If you have a tachometer pulse signal, use tacho_to_rpm function.

two_step_if uses the local maxima technique \({}^{[1]}\) for IF estimation, as follows;

\[\begin{split}f_{max}(t) = \underset{f}{Argmax}{\left|{X(t,f)}\right|}^2, \quad\mathrm{for}\; f \in \mathit{\Delta}f_t
\\
\\
\mathit{\Delta}f_t \subset \left\{f_{max}(t-d\tau)-\delta f, \; f_{max}(t-d\tau)+\delta f\right\}\end{split}\]

where, \({\delta f}\) is the given frequency tolerance for maxima detection,
\(X(t,f)\) is the STFT of signal \(x(t)\)
computed for frequency values in set \(\mathit{\Delta}f_t\),
specified from the previous estimate \(f_{max}(t-d\tau)\).
tau is time defined as a window position.
Note that for t=0, \(\mathit{\Delta}f_t\) should be given by the user.

	Parameters

	
	x (numpy.ndarray of shape (length of x,)) – A vibration 1-D signal.

	fs (int or float) – Sampling rate. [Hz]

	f_start (int or float) – Starting frequency point for the IF estimation. [Hz]

	f_tol (int or float) – Frequency tolerance for maxima detection. [Hz]

	filter_bw (int or float) – frequency bandwidth for filtration. [Hz]

	window (str or tuple or numpy.ndarray, default="hann") – Desired window to use for scipy.signal.stft.
If window is a string or tuple, it is passed to get_window to generate the window values,
which are DFT-even by default. See get_window for a list of windows and required parameters.
If window is array_like it will be used directly as the window
and its length must be nperseg. Defaults to a Hann window.

	nperseg (int, default=256) – Length of each segment for scipy.signal.stft.

	noverlap (int, default=None) – Number of points to overlap between segments.
If None, noverlap = nperseg // 2. Defaults to None.
When specified, the COLA constraint must be met;
i.e. (x.shape[axis] - nperseg) % (nperseg-noverlap) == 0.
For more information, see Notes of scipy.signal.stft.

	**kwargs (dict) – Additional parameters for scipy.signal.stft.

	Returns

	inst_freq (numpy.ndarray of shape (x.size - 1,)) – A instantaneous frequency(IF) profile.
For improved results try to manipulate f_tol and f_tol parameters.
You might also change spectrogram options.

References

	1

	Jacek Urbanek, Tomasz Barszcz, Jerome Antoni. (2013).
A two-step procedure for estimation of instantaneous rotational speed with large fluctuations.
https://doi.org/10.1016/j.ymssp.2012.05.009.

Examples

>>> import numpy as np
>>> import matplotlib.pyplot as plt

Generate a test signal, sin wave whose frequency is modulated around 3kHz, corrupted by white noise.

>>> fs = 1e4
>>> n = 1e5
>>> time = np.arange(n) / fs
>>> mod = 500 * np.cos(2 * np.pi * 0.1 * time)
>>> carrier = 3 * np.sin(2 * np.pi * 3e3 * time + mod)
>>> x = carrier + np.random.rand(carrier.size) / 5 # test signal

Extract the instantaneous frequency from the signal.

>>> inst_freq = two_step_if(x, fs, f_start=3e3, f_tol=50, filter_bw=5,
window='hann', nperseg=4096, noverlap=3985)

Plot the instantaneous frequency(IF) profile.

>>> time = np.arange(x.size) / fs
>>> time = time[:-1]
>>> plt.plot(time, inst_freq)
>>> plt.title('Estimated the instantaneous frequency(IF) profile')
>>> plt.ylabel('Frequency [Hz]')
>>> plt.xlabel('Time [sec]')
>>> plt.show()

onebone.feature.time

Signal analysis for the time domain.

	Author: Kyunghwan Kim

	Contact: kyunghwan.kim@onepredict.com

	
onebone.feature.time.crest_factor(x: ndarray, axis: Optional[int] = None) → ndarray

	Peak to average ratio along an axis.

\[crest factor = {|x_{peak}| \over {x_{rms}}}\]

	Parameters

	
	x (numpy.ndarray) – The data.

	axis (None or int, default=None) – Axis along which to calculate crest factor. By default, flatten the array.

	Returns

	crest_factor (numpy.ndarray) – Peak to average ratio of x.

Examples

>>> x = np.array([[4, 9, 2, 10],
... [6, 9, 7, 12]])
>>> crest_factor(x, axis=0)
array([0.39223219, 0. , 0.97128567, 0.18107148])
>>> crest_factor(x, axis=1)
array([1.12855283, 0.68155412])
>>> crest_factor(x)
1.2512223376239555

	
onebone.feature.time.kurtosis(x: ndarray, axis: int = 0, fisher: bool = True, bias: bool = True) → ndarray

	
Note

This method uses scipy.stats.kurtosis [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.kurtosis.html] method as it is.

Compute the kurtosis (Fisher or Pearson) of a signal.

	Parameters

	
	x (numpy.ndarray) – The data.

	axis (None or int, default=0) – Axis along which the kurtosis is calculated. If None, compute over the whole array a.

	fisher (bool, default=True) – If True, Fisher’s definition is used (normal ==> 0.0).
If False, Pearson’s definition is used (normal ==> 3.0).

	bias (bool, default=True) –

	False (If) –

	bias. (then the calculations are corrected for statistical) –

	Returns

	kurtosis (numpy.ndarray) – The kurtosis of values along an axis.
If all values are equal, return -3 for Fisher’s definition and 0 for Pearson’s definition.

Examples

>>> x = np.array([[4, 9, 2, 10],
... [6, 9, 7, 12]])
>>> kurtosis(x)
array([-2., -3., -2., -2.])

	
onebone.feature.time.peak2peak(x, axis: Optional[int] = None) → ndarray

	
Note

This method uses numpy.ptp [https://numpy.org/doc/stable/reference/generated/numpy.ptp.html] method as it is.

Maximum to minimum difference along an axis.

	Parameters

	
	x (array_like) – The data.

	axis (None or int, default=None) – Axis along which to find the peaks. By default, flatten the array.

	Returns

	p2p (numpy.ndarray) – The difference between the maximum and minimum values in x.

Examples

>>> x = np.array([[4, 9, 2, 10],
... [6, 9, 7, 12]])
>>> ptp(x, axis=1)
array([8, 6])
>>> ptp(x, axis=0)
array([2, 0, 5, 2])
>>> ptp(x)
10

	
onebone.feature.time.rms(x: ndarray, axis: Optional[int] = None) → ndarray

	Root mean square along an axis.

	Parameters

	
	x (numpy.ndarray) – The data.

	axis (None or int, default=None) – Axis along which to calculate rms. By default, flatten the array.

	Returns

	rms (numpy.ndarray) – Root mean square value of x.

Examples

>>> x = np.array([[4, 9, 2, 10],
... [6, 9, 7, 12]])
>>> rms(x, axis=0)
array([5.09901951, 9. , 5.14781507, 11.04536102])
>>> rms(x, axis=1)
array([7.08872344, 8.80340843])
>>> rms(x)
7.99218368157289

onebone.math

onebone.math.integrate

Frequency domain feature.

	Author: Kangwhi Kim

	Contact: kangwhi.kim@onepredict.com

	
onebone.math.integrate.integrate_trapezoid(y, x=None, dx: float = 1.0, axis: int = -1) → Union[float, ndarray]

	
Note

This method uses numpy.trapz [https://numpy.org/doc/stable/reference/generated/numpy.trapz.html] method as it is.

Integrate along the given axis using the composite trapezoidal rule.

If x is provided, the integration happens in sequence along its
elements - they are not sorted.

Integrate y (x) along each 1d slice on the given axis, compute
\(\int y(x) dx\).
When x is specified, this integrates along the parametric curve,
computing \(\int_t y(t) dt =
\int_t y(t) \left.\frac{dx}{dt}\right|_{x=x(t)} dt\).

	Parameters

	
	y (array_like) – Input array to integrate.

	x (array_like, optional, default=None) – The sample points corresponding to the y values. If x is None,
the sample points are assumed to be evenly spaced dx apart.

	dx (float, optional, default=1) – The spacing between sample points when x is None.

	axis (int, optional, default=-1) – The axis along which to integrate.

	Returns

	trapz (float or ndarray) – Definite integral of ‘y’ = n-dimensional array as approximated along
a single axis by the trapezoidal rule. If ‘y’ is a 1-dimensional array,
then the result is a float. If ‘n’ is greater than 1, then the result
is an ‘n-1’ dimensional array.

See also

numpy.sum, numpy.cumsum

Notes

Image 2 illustrates trapezoidal rule – y-axis locations of points
will be taken from y array, by default x-axis distances between
points will be 1.0, alternatively they can be provided with x array
or with dx scalar. Return value will be equal to combined area under
the red lines.

References

	1

	Wikipedia page: https://en.wikipedia.org/wiki/Trapezoidal_rule

	2

	Illustration image:
https://en.wikipedia.org/wiki/File:Composite_trapezoidal_rule_illustration.png

Examples

>>> np.trapz([1,2,3])
4.0
>>> np.trapz([1,2,3], x=[4,6,8])
8.0
>>> np.trapz([1,2,3], dx=2)
8.0

Using a decreasing x corresponds to integrating in reverse:

>>> np.trapz([1,2,3], x=[8,6,4])
-8.0

More generally x is used to integrate along a parametric curve.
This finds the area of a circle, noting we repeat the sample which closes
the curve:

>>> theta = np.linspace(0, 2 * np.pi, num=1000, endpoint=True)
>>> np.trapz(np.cos(theta), x=np.sin(theta))
3.141571941375841

>>> a = np.arange(6).reshape(2, 3)
>>> a
array([[0, 1, 2],
 [3, 4, 5]])
>>> np.trapz(a, axis=0)
array([1.5, 2.5, 3.5])
>>> np.trapz(a, axis=1)
array([2., 8.])

onebone.preprocessing

onebone.preprocessing.feature_selection

Feature Selection methods.

	Author: Junha Jeon

	Contact: junha.jeon@onepredict.com

	
onebone.preprocessing.feature_selection.fs_crosscorrelation(x: ndarray, refer: ndarray, output_col_num: int) → ndarray

	
Note

This method uses scipy.signal.correlate [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.correlate.html].

Reduce the dimension of input data by removing the signals
which have small cross correlation with reference signal.

	Parameters

	
	x (numpy.ndarray of shape (data_length, n_features)) – The data.

	refer (numpy.ndarray of shape (data_length,)) – The reference data.

	output_col_num (int) – Number of columns after dimension reduction.

	Returns

	x_tr (numpy.ndarray of shape (data_length, n_features)) – The data after dimension reduction.

Examples

>>> t = np.linspace(0, 1, 1000)
>>> a = 1.0 * np.sin(2 * np.pi * 30.0 * t)
>>> b = 5.0 * np.sin(2 * np.pi * 30.0 * t)
>>> x = np.stack([a, b], axis=1)
>>> x.shape
(1000, 2)
>>> refer = 1.0 * np.sin(2 * np.pi * 10.0 * t)
>>> x_dimreduced = fs_crosscorrelation(x, refer, output_col_num=1)
>>> x_dimreduced.shape
(1000, 1)

onebone.preprocessing.pd

Transform PRPS(Phase Resolved Pulse Sequence) format pd data
to PRPD(Phase Resolved Partial Discharge) format.

	Author: Hyunjae Kim

	Contact: hyunjae.kim@onepredict.com

	
onebone.preprocessing.pd.ps2pd(ps, range_amp: Tuple[int, int] = (0, 256), resol_amp: int = 128) → ndarray

	Transform prps(phase resolved pulse sequance) to a prpd(phaes resolved partial discharge)
by marginalizing time dimension.

	Parameters

	
	ps (array_like of shape (n_resolution_phase, n_timestep)) – The data. Ex: kepco standard=(3600, 128)

	range_amp (tuple (min, max), default=(0, 256)) – Measurement range of PD DAQ. Refers to DAQ manufacture.

	resol_amp (int, default=128) – Desired resolution of amplitude resolution for transformd prpd.

	Returns

	pd (numpy.ndarray of shape (n_resolution_phase, n_resolution_amplitude)) – The transformed prpd.

Examples

>>> ps = np.random.random([3600,128])
>>> ps2pd(ps)
array([[0., 0., 0., ..., 0., 0., 0.],
 [0., 0., 0., ..., 0., 0., 0.],
 ...,
 [0., 0., 0., ..., 0., 0., 0.]])

onebone.preprocessing.scaling

Data scaling methods.

	Author: Kyunghwan Kim

	Contact: kyunghwan.kim@onepredict.com

	
onebone.preprocessing.scaling.minmax_scaling(x, feature_range: Tuple[int, int] = (0, 1), axis: int = 0) → ndarray

	
Note

This method uses sklearn.preprocessing.minmax_scale [https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.minmax_scale.html] method as it is.

Transform features by scaling each feature to a given range.

\[x' = {(x - x_{min}) \over (x_{max} - x_{min})}\]

	Parameters

	
	x (array_like of shape (n_samples, n_features)) – The data.

	feature_range (tuple (min, max), default=(0, 1)) – Desired range of transformed data.

	axis (int, default=0) – Axis used to scale along.

	Returns

	x_tr (numpy.ndarray of shape (n_samples, n_features)) – The transformed data.

Examples

>>> a = list(range(9))
>>> a
[0, 1, 2, 3, 4, 5, 6, 7, 8]
>>> minmax_scaling(a)
array([0. , 0.125, 0.25 , 0.375, 0.5 , 0.625, 0.75 , 0.875, 1.])

	
onebone.preprocessing.scaling.zscore_scaling(x, axis: int = 0)

	
Note

This method uses sklearn.preprocessing.scale [https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.scale.html] method as it is.

Transform input data so that they can be described as a normal distribution.

\[x' = {(x - x_{mean}) \over x_{std}}\]

	Parameters

	
	x (array_like of shape (n_samples, n_features)) – The data.

	axis (int, default=0) – Axis used to compute the means and standard deviations along.

	Returns

	x_tr (numpy.ndarray of shape (n_samples, n_features)) – The transformed data.

Examples

>>> a = list(range(9))
>>> a
[0, 1, 2, 3, 4, 5, 6, 7, 8]
>>> zscore_scaling(a)
array([-1.54919334, -1.161895 , -0.77459667, -0.38729833, 0.,
 0.38729833, 0.77459667, 1.161895 , 1.54919334])

onebone.signal

onebone.signal.denoise

Signal denoising method.

	Author: Kyunghwan Kim

	Contact: kyunghwan.kim@onepredict.com

	
onebone.signal.denoise.wavelet_denoising(signal: ndarray, wavelet: str, axis: int = -1, level: Optional[int] = None) → ndarray

	Denoise signal using Discrete Wavelet Transform(DWT).

	Multilevel Wavelet Decomposition.

	Identify a thresholding technique.

	Threshold and Reconstruct.

	Parameters

	
	signal (numpy.ndarray) – Input signal.

	wavelet (str) – Wavelet name.
See this page [http://wavelets.pybytes.com/].

	axis (int, default=-1) – Axis over which to compute the DWT.

	level (int, default=None) – If level is None, then it will be calculated using
the pywt.dwt_max_level function.

	Returns

	out (numpy.ndarray) – Denoised signal.

Examples

Apply the filter to 1d signal.

>>> signal = np.array([10.0] * 10 + [0.0] * 10)
>>> signal += np.random.random(signal.shape)

[image: _images/a99efb36c6073dcff7c69a48b9698081af63516c.png#noqa]
>>> wavelet = "db1"
>>> denoised_signal = wavelet_denoising(signal, wavelet, level=2)

[image: _images/423cb3b33f9948ad6e84638b3d32858c0704e5e9.png#noqa]

onebone.signal.envelope

Extract envelope.

	Author: Kangwhi Kim

	Contact: kangwhi.kim@onepredict.com

	
onebone.signal.envelope.envelope_hilbert(x, axis: int = -1) → ndarray

	Extract the envelope from the signal using the ‘Hilbert transform’.

	Parameters

	
	x (array_like) – Signal data. Must be real.

	axis (int, default=-1) – Axis along which to do the transformation.

	Returns

	y (numpy.ndarray) – Envelope of the x, of each 1-D array along axis

onebone.signal.fft

The module about fast fourier transform.

	Author: Daeyeop Na, Kangwhi Kim

	Contact: daeyeop.na@onepredict.com, kangwhi.kim@onepredict.com

	
onebone.signal.fft.positive_fft(signal: ndarray, fs: Union[int, float], hann: bool = False, normalization: bool = False, axis: int = -1) → Tuple[ndarray, ndarray]

	Positive 1D fourier transformation.

	Parameters

	
	signal (numpy.ndarray) – Original time-domain signal

	fs (Union[int, float]) – Sampling rate

	hann (bool, default = False) – hann function used to perform Hann smoothing. It is implemented when hann is True

	normalization (bool, default = False) – Normalization after Fourier transform

	axis (int, default=-1) – The axis of the input data array along which to apply the fourier Transformation.

	Returns

	
	freq (numpy.ndarray) – frequency
If input shape is [signal_length,], output shape is freq = [signal_length,].
If input shape is [n, signal_length,], output shape is freq = [signal_length,].

	mag (numpy.ndarray) – magnitude
If input shape is [signal_length,], output shape is mag = [signal_length,].
If input shape is [n, signal_length,], output shape is mag = [n, signal_length,].

Examples

>>> n = 400 # array length
>>> fs = 800 # Sampling frequency
>>> t = 1 / fs # Sample interval time
>>> x = np.linspace(0.0, n * t, n, endpoint=False) # time
>>> y = 3 * np.sin(50.0 * 2.0 * np.pi * x) + 2 * np.sin(80.0 * 2.0 * np.pi * x)
>>> signal = y
>>> freq, mag = positive_fft(signal, fs, hann = False, normalization = False, axis = -1)
>>> freq = np.around(freq[np.where(mag > 1)])
>>> freq
[50., 80.]

onebone.signal.filter

	A frequency filter to leave only a specific frequency band.
	and a filter that replaces outlier values in data with other values.

	Author: Kyunghwan Kim, Sunjin Kim

	Contact: kyunghwan.kim@onepredict.com, sunjin.kim@onepredict.com

	
onebone.signal.filter.bandpass_filter(signal: ndarray, fs: Union[int, float], l_cutoff: Union[int, float], h_cutoff: Union[int, float], order: int = 5, axis: int = -1) → ndarray

	1D Butterworth bandpass filter.

	Parameters

	
	signal (numpy.ndarray) – Original time-domain signal.

	fs (Union[int, float]) – Sampling rate.

	l_cutoff (Union[int, float]) – Low cutoff frequency.

	h_cutoff (Union[int, float]) – High cutoff frequency.

	order (int, default=5) – Order of butterworth filter.

	axis (int, default=-1) – The axis of the input data array along which to apply the linear filter.

	Returns

	out (numpy.ndarray) – Filtered signal.
If input shape is [signal_length,], output shape is [signal_length,].
If input shape is [n, signal_length,], output shape is [n, signal_length,].

Examples

Apply the filter to 1d signal. And then check the frequency component of the filtered signal.

>>> fs = 5000.0
>>> t = np.linspace(0, 1, int(fs))
>>> signal = 10.0 * np.sin(2 * np.pi * 20.0 * t)
>>> signal += 5.0 * np.sin(2 * np.pi * 100.0 * t)
>>> signal += 5.0 * np.sin(2 * np.pi * 500.0 * t)
>>> signal.shape
(5000,)
>>> freq_x = np.fft.rfftfreq(signal.size, 1 / fs)[:-1]
>>> origin_fft_mag = abs((np.fft.rfft(signal) / signal.size)[:-1] * 2)
>>> origin_freq = freq_x[np.where(origin_fft_mag > 0.5)]
>>> origin_freq
[20., 100., 500.]
>>> filtered_signal = bandpass_filter(signal, fs, l_cutoff=50, h_cutoff=300)
>>> filtered_fft_mag = abs((np.fft.rfft(filtered_signal) / signal.size)[:-1] * 2)
>>> filtered_freq = freq_x[np.where(filtered_fft_mag > 0.5)]
>>> filtered_freq
[100.]

Apply the filter to 2d signal (axis=0).

>>> fs = 5000.0
>>> t = np.linspace(0, 1, int(fs))
>>> signal = 10.0 * np.sin(2 * np.pi * 20.0 * t)
>>> signal += 5.0 * np.sin(2 * np.pi * 100.0 * t)
>>> signal = np.stack([signal, signal]).T
>>> signal.shape
(5000, 2)
>>> filtered_signal = bandpass_filter(signal, fs, l_cutoff=50, h_cutoff=300, axis=0)
>>> filtered_fft_mag = abs((np.fft.rfft(filtered_signal[:, 0]) / signal.size)[:-1] * 2)
>>> filtered_freq = freq_x[np.where(filtered_fft_mag > 0.5)]
>>> filtered_freq
[100.]

	
onebone.signal.filter.bandpass_filter_ideal(signal: ndarray, fs: Union[int, float], l_cutoff: Union[int, float], h_cutoff: Union[int, float]) → ndarray

	
Warning

This method may cause distortion of signal. Generally, this operates well on signals extracted in low resolution. In order to check the distortion of signals, it is recommended to monitor the linear transition of phase.

1D ideal bandpass filter.

	Parameters

	
	signal (numpy.ndarray) – Original time-domain signal.

	fs (Union[int, float]) – Sampling rate.

	l_cutoff (Union[int, float]) – Low cutoff frequency.

	h_cutoff (Union[int, float]) – High cutoff frequency.

	Returns

	out (numpy.ndarray) – Filtered signal.
Input shape is [signal_length,] and output shape is [signal_length,].

Examples

Apply the filter to 1d signal. And then check the frequency component of the filtered signal.

>>> fs = 5000.0
>>> t = np.linspace(0, 1, int(fs))
>>> signal = 10.0 * np.sin(2 * np.pi * 20.0 * t)
>>> signal += 5.0 * np.sin(2 * np.pi * 100.0 * t)
>>> signal += 5.0 * np.sin(2 * np.pi * 500.0 * t)
>>> signal.shape
(5000,)
>>> freq_x = np.fft.rfftfreq(signal.size, 1 / fs)[:-1]
>>> origin_fft_mag = abs((np.fft.rfft(signal) / signal.size)[:-1] * 2)
>>> origin_freq = freq_x[np.where(origin_fft_mag > 0.5)]
>>> origin_freq
[20., 100., 500.]
>>> filtered_signal = bandpass_filter_ideal(signal, fs, l_cutoff=50, h_cutoff=300)
>>> filtered_fft_mag = abs((np.fft.rfft(filtered_signal) / signal.size)[:-1] * 2)
>>> filtered_freq = freq_x[np.where(filtered_fft_mag > 0.5)]
>>> filtered_freq
[100.]

	
onebone.signal.filter.bandstop_filter(signal: ndarray, fs: Union[int, float], l_cutoff: Union[int, float], h_cutoff: Union[int, float], order: int = 5, axis: int = -1) → ndarray

	1D Butterworth bandstop filter.

	Parameters

	
	signal (numpy.ndarray) – Original time-domain signal.

	fs (Union[int, float]) – Sampling rate.

	l_cutoff (Union[int, float]) – Low cutoff frequency.

	h_cutoff (Union[int, float]) – High cutoff frequency.

	order (int, default=5) – Order of butterworth filter.

	axis (int, default=-1) – The axis of the input data array along which to apply the linear filter.

	Returns

	out (numpy.ndarray) – Filtered signal.
If input shape is [signal_length,], output shape is [signal_length,].
If input shape is [n, signal_length,], output shape is [n, signal_length,].

Examples

Apply the filter to 1d signal. And then check the frequency component of the filtered signal.

>>> fs = 5000.0
>>> t = np.linspace(0, 1, int(fs))
>>> signal = 10.0 * np.sin(2 * np.pi * 20.0 * t)
>>> signal += 5.0 * np.sin(2 * np.pi * 100.0 * t)
>>> signal += 5.0 * np.sin(2 * np.pi * 500.0 * t)
>>> signal.shape
(5000,)
>>> freq_x = np.fft.rfftfreq(signal.size, 1 / fs)[:-1]
>>> origin_fft_mag = abs((np.fft.rfft(signal) / signal.size)[:-1] * 2)
>>> origin_freq = freq_x[np.where(origin_fft_mag > 0.5)]
>>> origin_freq
[20., 100., 500.]
>>> filtered_signal = bandstop_filter(signal, fs, l_cutoff=50, h_cutoff=300)
>>> filtered_fft_mag = abs((np.fft.rfft(filtered_signal) / signal.size)[:-1] * 2)
>>> filtered_freq = freq_x[np.where(filtered_fft_mag > 0.5)]
>>> filtered_freq
[20., 500.]

Apply the filter to 2d signal (axis=0).

>>> fs = 5000.0
>>> t = np.linspace(0, 1, int(fs))
>>> signal = 10.0 * np.sin(2 * np.pi * 20.0 * t)
>>> signal += 5.0 * np.sin(2 * np.pi * 100.0 * t)
>>> signal = np.stack([signal, signal]).T
>>> signal.shape
(5000, 2)
>>> filtered_signal = bandstop_filter(signal, fs, l_cutoff=50, h_cutoff=300, axis=0)
>>> filtered_fft_mag = abs((np.fft.rfft(filtered_signal[:, 0]) / signal.size)[:-1] * 2)
>>> filtered_freq = freq_x[np.where(filtered_fft_mag > 0.5)]
>>> filtered_freq
[20., 500.]

	
onebone.signal.filter.hampel_filter(x: ndarray, window_size: int, n_sigma: float = 3) → Tuple[ndarray, list]

	A hampel filter removes outliers.
Estimate the median and standard deviation of each sample using
MAD(Median Absolute Deviation) in the window range set by the user.
If the MAD > 3 * sigma condition is satisfied,
the value is replaced with the median value.

\[m_i = median(x_{i-k_{left}}, x_{i-k_{left}+1}, ..., x_{i+k_{right}-1}, x_{i+k_{right}})\]

\[MAD_i = median(|x_{i-k}-m_{i}|,...,|x_{i+k}-m_{i}|)\]

\[{\sigma}_i = {\kappa} * MAD_i\]

Where \(k_{left}\) and \(k_{right}\) are the number of neighbors on the left and right sides,
respectively, based on x_i (\(k_{left} + k_{right}\) = window samples).
\(m_i\) is Local median, \(MAD_i\) is median absolute deviation
which is the residuals (deviations) from the data’s median.
\({\sigma}_i\) is the MAD may be used similarly to how one would use the deviation for the average.
In order to use the MAD as a consistent estimator
for the estimation of the standard deviation \({\sigma}\), one takes \({\kappa} * MAD_i\).
\({\kappa}\) is a constant scale factor, which depends on the distribution.
For normally distributed data \({\kappa}\) is taken to be \({\kappa}\) = 1.4826

	Parameters

	
	x (numpy.ndarray) – 1d-timeseries data.
The shape of x must be (signal_length,) .

	window_size (int) – Lenght of the sliding window.
Only integer types are available,
and the window size must be adjusted according to your data.

	n_sigma (float, defalut=3) – Coefficient of standard deviation.

	Returns

	
	filtered_x (numpy.ndarray) – A value from which outlier or NaN has been removed by the filter.

	index (list) – Returns the index corresponding to outlier.

References

[1] Pearson, Ronald K., et al. “Generalized hampel filters.”
EURASIP Journal on Advances in Signal Processing 2016.1 (2016): 1-18.
DOI: 10.1186/s13634-016-0383-6

Examples

>>> fs = 1000.0
>>> t = np.linspace(0, 1, int(fs))
>>> y = np.sin(2 * np.pi * 10.0 * t)
>>> np.put(y, [13, 124, 330, 445, 651, 775, 978], 3)
>>> plt.plot(y) # noise_signal

[image: _images/3CWKVaw.png]
>>> filtered_signal = hampel_filter.hampel_filter(y, window_size=5)[0]
>>> plt.plot(filtered_signal) # filtered_signal

[image: _images/3in3Jq1.png]

	
onebone.signal.filter.highpass_filter(signal: ndarray, fs: Union[int, float], cutoff: Union[int, float], order: int = 5, axis: int = -1) → ndarray

	1D Butterworth highpass filter.

	Parameters

	
	signal (numpy.ndarray) – Original time-domain signal.

	fs (Union[int, float]) – Sampling rate.

	cutoff (Union[int, float]) – Cutoff frequency.

	order (int, default=5) – Order of butterworth filter.

	axis (int, default=-1) – The axis of the input data array along which to apply the linear filter.

	Returns

	out (numpy.ndarray) – Filtered signal.

Examples

Apply the filter to 1d signal. And then check the frequency component of the filtered signal.

>>> fs = 5000.0
>>> t = np.linspace(0, 1, int(fs))
>>> signal = 10.0 * np.sin(2 * np.pi * 20.0 * t)
>>> signal += 5.0 * np.sin(2 * np.pi * 100.0 * t)
>>> signal.shape
(5000,)
>>> freq_x = np.fft.rfftfreq(signal.size, 1 / fs)[:-1]
>>> origin_fft_mag = abs((np.fft.rfft(signal) / signal.size)[:-1] * 2)
>>> origin_freq = freq_x[np.where(origin_fft_mag > 0.5)]
>>> origin_freq
[20., 100.]
>>> filtered_signal = highpass_filter(signal, fs, cutoff=50)
>>> filtered_fft_mag = abs((np.fft.rfft(filtered_signal) / signal.size)[:-1] * 2)
>>> filtered_freq = freq_x[np.where(filtered_fft_mag > 0.5)]
>>> filtered_freq
[100.]

Apply the filter to 2d signal (axis=0).

>>> fs = 5000.0
>>> t = np.linspace(0, 1, int(fs))
>>> signal = 10.0 * np.sin(2 * np.pi * 20.0 * t)
>>> signal += 5.0 * np.sin(2 * np.pi * 100.0 * t)
>>> signal = np.stack([signal, signal]).T
>>> signal.shape
(5000, 2)
>>> filtered_signal = highpass_filter(signal, fs, cutoff=50, axis=0)
>>> filtered_fft_mag = abs((np.fft.rfft(filtered_signal[:, 0]) / signal.size)[:-1] * 2)
>>> filtered_freq = freq_x[np.where(filtered_fft_mag > 0.5)]
>>> filtered_freq
[100.]

	
onebone.signal.filter.lowpass_filter(signal: ndarray, fs: Union[int, float], cutoff: Union[int, float], order: int = 5, axis: int = -1) → ndarray

	1D Butterworth lowpass filter.

	Parameters

	
	signal (numpy.ndarray) – Original time-domain signal.

	fs (Union[int, float]) – Sampling rate.

	cutoff (Union[int, float]) – Cutoff frequency.

	order (int, default=5) – Order of butterworth filter.

	axis (int, default=-1) – The axis of the input data array along which to apply the linear filter.

	Returns

	out (numpy.ndarray) – Filtered signal.

Examples

Apply the filter to 1d signal. And then check the frequency component of the filtered signal.

>>> fs = 5000.0
>>> t = np.linspace(0, 1, int(fs))
>>> signal = 10.0 * np.sin(2 * np.pi * 20.0 * t)
>>> signal += 5.0 * np.sin(2 * np.pi * 100.0 * t)
>>> signal.shape
(5000,)
>>> freq_x = np.fft.rfftfreq(signal.size, 1 / fs)[:-1]
>>> origin_fft_mag = abs((np.fft.rfft(signal) / signal.size)[:-1] * 2)
>>> origin_freq = freq_x[np.where(origin_fft_mag > 0.5)]
>>> origin_freq
[20., 100.]
>>> filtered_signal = lowpass_filter(signal, fs, cutoff=50)
>>> filtered_fft_mag = abs((np.fft.rfft(filtered_signal) / signal.size)[:-1] * 2)
>>> filtered_freq = freq_x[np.where(filtered_fft_mag > 0.5)]
>>> filtered_freq
[20.]

Apply the filter to 2d signal (axis=0).

>>> fs = 5000.0
>>> t = np.linspace(0, 1, int(fs))
>>> signal = 10.0 * np.sin(2 * np.pi * 20.0 * t)
>>> signal += 5.0 * np.sin(2 * np.pi * 100.0 * t)
>>> signal = np.stack([signal, signal]).T
>>> signal.shape
(5000, 2)
>>> filtered_signal = lowpass_filter(signal, fs, cutoff=50, axis=0)
>>> filtered_fft_mag = abs((np.fft.rfft(filtered_signal[:, 0]) / signal.size)[:-1] * 2)
>>> filtered_freq = freq_x[np.where(filtered_fft_mag > 0.5)]
>>> filtered_freq
[20.]

onebone.signal.smoothing

A Moving Average (MA) which returns the weighted average of array.

	Author: Kibum Park

	Contact: kibum.park@onepredict.com

	
onebone.signal.smoothing.moving_average(signal: ndarray, window_size: Union[int, float], pad: bool = False, weights: Optional[ndarray] = None, axis: Union[int, float] = -1) → ndarray

	Weighted moving average.
.. math:: WMA(x, w, t, n) = sum_{i=n-t+1}^{n} w_i x_i,
where \(x\) is the input array,
\(w_i\) is the weight of the \(i\)-th element,
\(t\) is the window size,
\(n\) is the \(n\) is smaller than \(t\), \(i\) is set to \(0\).

	Parameters

	
	signal (numpy.ndarray of shape (signal_length,), (n, signal_length,)) – Original time-domain signal.

	window_size (Union[int, float], optional, default=10) – Window size.
One of window_size,`weights` must be specified.

	pad (bool, default=False) – Padding method.
If True, Pads with the edge values of array is added. So the shape of output is same as signal.

	weights (Union[numpy.ndarray of shape (window_size,), None], optional, default=None) – Weighting coefficients.
If None, the weights are uniform.
One of window_size,`weights` must be specified.

	axis (Union[int, float], optional, default=-1) – The axis of the input data array along which to apply the moving average.

	Returns

	ma (numpy.ndarray) – Moving average signal.
If input shape is [signal_length,], output shape is [signal_length,].
If input shape is [n, signal_length,] and axis is 1, output shape is [n, signal_length,].
If input shape is [signal_length, n] and axis is 0, output shape is [signal_length, n].
If pad is False, output shape is [signal_length - window_size + 1,].
If pad is True, output shape is [signal_length,].

Examples

>>> signal = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
>>> window_size = 3
>>> moving_average(signal, window_size)
[2, 3, 4, 5, 6, 7, 8, 9]

>>> signal = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
>>> window_size = 3
>>> moving_average(signal, window_size, pad=True)
[1, 1.5, 2, 3, 4, 5, 6, 7, 8, 9]

>>> signal = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
>>> window_size = 3
>>> weights = np.array([1, 2, 3])
>>> moving_average(signal, window_size, weights=weights)
[2.33333333, 3.33333333, 4.33333333, 5.33333333, 6.33333333, 7.33333333, 8.33333333, 9.33333333]

onebone.utils

onebone.utils.slicing

	
onebone.utils.slicing.slice_along_axis(arr: ndarray, s: slice, axis: int) → ndarray

	Slice the values of the array within a certain range on the axis.

	Parameters

	
	arr (numpy.ndarray) – Input array.

	s (slice) – Range on the axis.

	axis (int) – Axis

	Returns

	arr_out (numpy.ndarray) – Sliced input array.

onebone.utils.timer

Timer function.

	Author: Kangwhi Kim

	Contact: kangwhi.kim@onepredict.com

	
class onebone.utils.timer.Timer(logger: Optional[Logger] = None)

	Bases: object

Check the elapsed time of the function.

Note

Use it as a function decorator.

	Parameters

	logger (logging.Logger, default=None) – A logger.

	Returns

	wrapper (function) – Wrapper function. When logger is not None,
the debug level message is delivered to the logger within the wrapper function.
But, when logger is None,
the message is delivered to the print function.

Examples

>>> import logging
>>> import time
>>> from onebone.utils import Timer

Create a logger.

>>> logger = logging.getLogger(__name__)
>>> logger.setLevel(logging.DEBUG)
>>> stream_handler = logging.StreamHandler()
>>> logger.addHandler(stream_handler)

Add the Timer Decorator to the function.

>>> @Timer(logger)
>>> def timer_test():
 start = time.time()
 time.sleep(1)
 duration = time.time() - start
 return duration

Run the function.

>>> timer_test()

 Python Module Index

 o

 		 	

 		
 o	

 	[image: -]
 	
 onebone	

 	
 	
 onebone.feature.correlations	

 	
 	
 onebone.feature.frequency	

 	
 	
 onebone.feature.gear	

 	
 	
 onebone.feature.snr	

 	
 	
 onebone.feature.tacho	

 	
 	
 onebone.feature.tacholess	

 	
 	
 onebone.feature.time	

 	
 	
 onebone.math.integrate	

 	
 	
 onebone.preprocessing.feature_selection	

 	
 	
 onebone.preprocessing.pd	

 	
 	
 onebone.preprocessing.scaling	

 	
 	
 onebone.signal.denoise	

 	
 	
 onebone.signal.envelope	

 	
 	
 onebone.signal.fft	

 	
 	
 onebone.signal.filter	

 	
 	
 onebone.signal.smoothing	

 	
 	
 onebone.utils.slicing	

 	
 	
 onebone.utils.timer	

Index

 B
 | C
 | E
 | F
 | H
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | V
 | W
 | Z

B

 	
 	bandpass_filter() (in module onebone.signal.filter)

 	
 	bandpass_filter_ideal() (in module onebone.signal.filter)

 	bandstop_filter() (in module onebone.signal.filter)

C

 	
 	crest_factor() (in module onebone.feature.time)

E

 	
 	envelope_hilbert() (in module onebone.signal.envelope)

F

 	
 	fs_crosscorrelation() (in module onebone.preprocessing.feature_selection)

H

 	
 	hampel_filter() (in module onebone.signal.filter)

 	
 	highpass_filter() (in module onebone.signal.filter)

I

 	
 	integrate_trapezoid() (in module onebone.math.integrate)

K

 	
 	kurtosis() (in module onebone.feature.time)

L

 	
 	lowpass_filter() (in module onebone.signal.filter)

M

 	
 	mdf() (in module onebone.feature.frequency)

 	minmax_scaling() (in module onebone.preprocessing.scaling)

 	mnf() (in module onebone.feature.frequency)

 	
 module

 	onebone.feature.correlations

 	onebone.feature.frequency

 	onebone.feature.gear

 	onebone.feature.snr

 	onebone.feature.tacho

 	onebone.feature.tacholess

 	onebone.feature.time

 	onebone.math.integrate

 	onebone.preprocessing.feature_selection

 	onebone.preprocessing.pd

 	onebone.preprocessing.scaling

 	onebone.signal.denoise

 	onebone.signal.envelope

 	onebone.signal.fft

 	onebone.signal.filter

 	onebone.signal.smoothing

 	onebone.utils.slicing

 	onebone.utils.timer

 	
 	moving_average() (in module onebone.signal.smoothing)

N

 	
 	na4() (in module onebone.feature.gear)

O

 	
 	
 onebone.feature.correlations

 	module

 	
 onebone.feature.frequency

 	module

 	
 onebone.feature.gear

 	module

 	
 onebone.feature.snr

 	module

 	
 onebone.feature.tacho

 	module

 	
 onebone.feature.tacholess

 	module

 	
 onebone.feature.time

 	module

 	
 onebone.math.integrate

 	module

 	
 onebone.preprocessing.feature_selection

 	module

 	
 	
 onebone.preprocessing.pd

 	module

 	
 onebone.preprocessing.scaling

 	module

 	
 onebone.signal.denoise

 	module

 	
 onebone.signal.envelope

 	module

 	
 onebone.signal.fft

 	module

 	
 onebone.signal.filter

 	module

 	
 onebone.signal.smoothing

 	module

 	
 onebone.utils.slicing

 	module

 	
 onebone.utils.timer

 	module

P

 	
 	peak2peak() (in module onebone.feature.time)

 	phase_alignment() (in module onebone.feature.correlations)

 	
 	positive_fft() (in module onebone.signal.fft)

 	ps2pd() (in module onebone.preprocessing.pd)

R

 	
 	rms() (in module onebone.feature.time)

S

 	
 	slice_along_axis() (in module onebone.utils.slicing)

 	
 	snr() (in module onebone.feature.snr)

T

 	
 	tacho_to_angle() (in module onebone.feature.tacho)

 	tacho_to_rpm() (in module onebone.feature.tacho)

 	
 	Timer (class in onebone.utils.timer)

 	two_step_if() (in module onebone.feature.tacholess)

V

 	
 	vcf() (in module onebone.feature.frequency)

W

 	
 	wavelet_denoising() (in module onebone.signal.denoise)

Z

 	
 	zscore_scaling() (in module onebone.preprocessing.scaling)

 nav.xhtml

 Table of Contents

 		
 Welcome, Onebone!

 		
 onebone

 		
 onebone.feature

 		
 onebone.feature.correlations

 		
 onebone.feature.frequency

 		
 onebone.feature.gear

 		
 onebone.feature.snr

 		
 onebone.feature.tacho

 		
 onebone.feature.tacholess

 		
 onebone.feature.time

 		
 onebone.math

 		
 onebone.math.integrate

 		
 onebone.preprocessing

 		
 onebone.preprocessing.feature_selection

 		
 onebone.preprocessing.pd

 		
 onebone.preprocessing.scaling

 		
 onebone.signal

 		
 onebone.signal.denoise

 		
 onebone.signal.envelope

 		
 onebone.signal.fft

 		
 onebone.signal.filter

 		
 onebone.signal.smoothing

 		
 onebone.utils

 		
 onebone.utils.slicing

 		
 onebone.utils.timer

_static/file.png

_images/3in3Jq1.png
30

25

20

15

10

05

00

05

10

— fitered_signal

%0

w0

&0

E

1000

_static/minus.png

_static/plus.png

_images/3CWKVaw.png
30

25

20

15

10

05

00

05

10

— roise_signal

20

w0

&0

E

1000

